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ABSTRACT: A new technique for signal recovery and sampling is compressed sensing. It states that a sparse 

signal has relatively small number of linear measurements and it contains most of its information and these 

highly incomplete observations can exactly reconstruct that signal. The major challenge in practical 

applications of compressed sensing consists in providing efficient, stable and fast recovery algorithms which, in 

a few seconds evaluate a good approximation of compressible image from highly incomplete and noisy samples. 

In this paper compressed sensing image recovery problem using adaptive nonlinear filtering strategies in an 

iterative frame work and the resulting two-step iterative scheme convergence is proved. The several numerical 

experiments conform that he corresponding algorithm possesses the required properties of efficiency, stability 

and low computational cost and those of the state of the art algorithms are competitive to its performance. 

 

Index terms: compressed sensing, sparse image recovery, nonlinear filters, median filters, L-minimization, 

total variation 

I. INTRODUCTION 
                  In most image reconstruction problems, the images are not directly observable. Instead, one observes 

a transformed version of the image, possibly corrupted by noise. In the general case, the estimation of the image 

can be regarded as a simultaneous de-convolution and de-noising problem. Intuitively, a better reconstruction 

can be obtained by incorporating knowledge of the image into the reconstruction algorithm. The flows of data 

(signals and images) around us are growing rapidly today. However, the number of salient features hidden in 

massive data is usually much smaller than their sizes.  

Hence data are compressible. In data processing, the traditional practice is to measure (sense) data in full length 

and then compress the resulting measurements before storage or transmission. In such a scheme, recovery of 

data is generally straight forward. This traditional data-acquisition process can be described as “full sensing plus 

compressing”. Compressive sensing (CS), also known as compressed sensing or compressive sampling, 

represents a paradigm shift in which the number of measurements is reduced during acquisition so that no 

additional compression is necessary. The price to pay is that more sophisticated recovery procedures become 

necessary. Compressed sensing is a new technique for recovery of the signal and sampling. It follows that 

signals that have a sparse representation in a transform domain can be exactly recovered from these 

measurements by solving an optimization problem which is represented as 

                      Minimize  a 1  ,       subject to         PW
T

a = Pn                                                                   (1) 

 

a = Wu  is coefficients vector of reconstruction u in that domain. Here P  is an MXN matrix. Here M is very less 

than N. this matrix is necessary to possess restricted isometric property, n belongs to IR
N  is the unknown 

signal, that is W belongs to IR
N# N  orthogonal matrix of k-sparse transform domain. To obtain perfect recovery 

the number M of given measurements depends upon the N, k, P . K is orthogonal signal, P  is acquisition matrix. 

If unknown signal n has sparse gradient, it can be recovered by problem (1) as 

 

                                
min

u
Vu 1       subject to         PW

T
a = Pn                                                                      (2) 

 

Image recovery problem is suited for this formulation. Since many images can be modeled as piece-wise-

smooth functions containing a substantial number of discontinuities. In real problems no need of exact 

measurements, so if the measurements are corrupted with random noise, namely we have 

 

                                                Y= P x + e                                                                                                        (3) 
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The original signal can be reconstructed with an error capable to the noise level by solving the minimum 

problem 

 

                        a 1,    subject to    PW
T

a - y 2
2

# E
2

                                                                          (4)  

 

                     min
u

d u 1,     subject to     Pu - y 2
2

# E
2                                                                              (5)        

Sparse signals are an idealization that we rarely encounter in applications, but real signals are quite often 

compressible with respect to an orthogonal basis. This means that, if expressed in that basis, their coefficients 

exhibit exponential decay when stored by magnitude. As a consequence, compressible signals are well 

approximated by K –sparse signals and compressed sensing paradigm guarantees that from M linear 

measurements we can obtain a reconstruction with an error comparable to that of the best possible K –terms 

approximation within the scarifying basis  

II. RECONSTRUCTION APPROACH 
                    We set here our notation and state the results we will use in the following. Let S belongs to 

R(N1XN2)  be a randomly generated binary mask, such that the point-to-point product with any v  belongs to 

R(N1XN2)   , denoted by  S x v , represents a random selection of the elements of  v, namely, we have 

 

         vs = S. v     With      vS i j =
0, i f s i j = 0
v i j , i f s i j = 1'

                                                                                     (6) 

 

Let T be an orthogonal transform acting on an image X We denote by 

                                      T Sn = S $ Tn
^ h

                                                                                                         (7)       

                                       

The randomly sub sampled orthogonal transform of. 

Then the input data can be represented as 

 

                                  y = S $ Tn
^ h

= T Sn                                                                                                      (8)       

 

We want to find u belongs to R (N1xN2) that solves 

 

            
ueIR

N1XN2
min

F u
^h

, subject to   y = S $ Tn
^ h

= T Sn                                                                            (9)            

                                       

In the case of input data perturbed by additive white Gaussian noise with standard deviation   

 

                           y = S $ Tn + e

^ h
= T Sn + eS                                                                                             (10) 

 

The problem can be cast as  

 

               
ueIR

N1XN2
min

F u
^h

,   subject to   <T Su - y <2
2

< E
2                                                                       (11) 

 

                           E
2 = Z

2
M + 2 2M

_ i
                                                                                                      (12) 

 

To overcome this problem we use the well known penalization approach that considers a sequence of 

unconstrained minimization sub problems of the form         

 

                    
u ! IR

N1XN2
min

{F u
^h

+
2X k

1
<T Su - y <2

2
}                                                                              (13) 
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The convergence of the penalization method to the solution of the original constrained problem has been 

established (under very mild conditions). Unfortunately, in general, using very small penalization parameter 

values makes the unconstrained sub problems very ill-conditioned and difficult to solve. In the present context, 

we do not have this limitation, since we will approach these problems implicitly, thus, avoiding the need to deal 

with ill-conditioned linear systems. 

The corresponding bound constrained two-step iterative algorithm is the following: 

 

                 

u n + 1 = argmin u! C { F (u) +
2X
1

u - vn 2
2
} .

u n = u n + YT S
T

(y - T Su n)*
                                                                          (14) 

 

 

III. RECONSTRUCTION ALGORITHM 
               The proposed penalized splitting approach corresponds to an algorithm whose structure is 

characterized by two-level iteration. The general scheme of the bound constrained algorithm is following. 

                                                                                            

 Algorithm NFCS-2D:                                                                                                              

 

Step A-0: initialization 

Given F .
^h

, y, T S,Y > 0, Z > 0, 0 < r < 1, Toll $ 0, Xmin  and X0 such that 0 < Xmin # X0. 

Set k = 0, u 0,0 = 0 and X0,0 = X0. 

Step A-1: start with the outer iteration 

 

While (Xk,0 > Xmin and T Suk,0 - y 2 > Toll)  

Step B-0: Start with the inner iterations 

i = 0; 

Step B-1: 

Updating Step: 

vk,i = uk,i + YT S
T

(y - T Suk,i)  

Constrained nonlinear filtering step: 

uk,i + 1 = argmin u! C { 1/ 2Xk,i Y u - vk,i 2
2

+ F (u)}  

Convergence test: 

i f F (u k,i +1) - F (u k,i ) / F (u k,i +1) $ ZX k,i  

i = i + 1 

mk,i = mk,i - 1 go to step B-1 

Otherwise go to step A-2. 

Step A-2: Outer Iteration Updating 

k = k + 1 

X k,0 = r.X k - i ,i  

uk,0 = uk- 1,i + 1 

endwhile 

Terminate with u k,0 as an approximation of x 

Remark: The automatic stopping criterion of the outer loop depends upon which problem we are 

considering. If we want to recover an exactly sparse gradient image from noisy-free acquisitions the parameter 

Toll can be set to 0, and with X (min) of the order of the machine precision, we should obtain a numerically 

exact reconstruction. On the other hand, if we deal with compressible images or noisy data the stopping rule is 

governed by Toll. 

Inducing norm F (.) can be chosen according to the characteristics of the reconstruction problem. In 

several nonlinear 1-D filters have been widely experimented for different compressed sensing signal 

reconstruction problems, and their capabilities and efficiency have been analyzed. In this context, we are mainly 

concerned with the image reconstruction problem and, since many real images can be well approximated with 

sparse gradient signals, we have only considered the choice, namely the case in which F (.) represents the total 

variation of the image. 
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IV. NUMERICAL EXPERIMENTS 
                Several numerical experiments reported as the effectiveness of the proposed image reconstruction 

algorithm that highlights its reconstruction capabilities, stability and speed. This choice is motivated by the need 

to give an objective quantitative evaluation of the effectiveness of the proposed algorithm by using 

reconstructed image quality. 

 

Fig: 1. 256# 256 Acquisition masks. 

I: Sparse MRI masks corresponding to 75% under sampling. II: Radial mask with 60 rays corresponding to 77% 

under sampling. 

III: 2-D tensor product Gaussian masks c 77% under sampling. IV: 2-D Gaussian masks corresponding to 90% 

under sampling. 

 

Reconstructed images visual inspection is not really enough to compare the performance of different 

reconstruction algorithms. 

The PSNR value is used to evaluate the quality of image 

 

                 
 

Where R > 0 is the maximum value of the image gray level range and  

                                           

 

By using eight neighbour pixels we have used both unisotropic and isotropic descrete approximations of the 

total variation depicted in fig.1. the PSNR values that we give in different experiments refet to the first 

minimum energy reconstruction.  

 Since we have experimentally seen that it is not important to find a very accurate solution of the 

variation problem, for all the experiments we have fixed to four the number of iterations of the isotropic 

estimate yielded by the digital total variation filter. This choice represents a good compromise between accuracy 

and efficiency. 

                          

Fig: 2 Head image reconstruction from exact data, iterations 

(a) Minimum energy reconstruction 

(b) Isotropic reconstruction after 123 iterations 
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 All the experiments are performed using sub sampled frequency acquisitions, but, in order to 

demonstrate the capabilities of our nonlinear filtering method, we have tested it using four different acquisition 

strategies corresponding to the masks given in Fig. 1. More precisely, mask I is evaluated using the free 

software Sparse, mask II is a classic 60 ray mask, mask III is obtained as a tensor product of two 1-D-Gaussian 

masks ,and mask IV is generated as 2-D normally distributed random points. The term nonlinear approximation 

error relative to the Haar basis and evaluated using the reconstructions obtained using the isotropic TV estimates 

are shown in Fig.2. In the last series of experiments we applied our nonlinear filtering strategy to recover the 

256x256 Head image. 

 

V. RECONSRRUCTION OF AN IMAGE RESULTS 
                Reconstruction of head image using nonlinear filtering is more efficient. Here we are using a head 

image and applying the randomly generated binary mask to that image, then the noisy image represented which 

is shown in the fig.3. By using NFCS-2D we will get the reconstructed image which is same as the original 

image. Here we are using some parameters in proposed algorithm. The first parameter is the starting value of the 

penalization parameter X. the reducing rate of X is r. the value of  r is belonging to the interval [0.25- 0.8]. in 

practical, we have used a small value r = 0.25 for noise free sparse gradient case, and r = 0.4 or r = 0.8 for other 

cases. The second parameter is toll, used to stop the algorithm both for compressible images and clean data and 

for all cases of noisy data. When the data is noisy the noise level E is known, the possible choice of toll could be 

toll = E. since the value of E often overestimates the error norm, we have used a more flexible stopping 

criterion, setting toll= f.E, with f= [0.4, 1]. The choice of f=1 would stop the algorithm too early without 

exploiting its de-noising capabilities. The thord parameter is Z, which represents a mean for tuning the precision 

request in the inner iterations. A higher precision is responsible for an increase in the computing time, but can 

produce a more accurate reconstruction. So, in the attempt to find a good compromise between speed and 

reconstruction quality, we have used values of Z for sparse gradient images and exact data smaller than for 

compressible images and noisy data, that is Z=0.05 or Z= 1,respectively. Regarding the choice of the parameter Y 

we have always set Y= 1, even if a suitable greater value could be used to speed up the convergence of the 

algorithm. 

                                       
Fig3: reconstruction of image from mask image 

I. Noisy image, here randomly generated binary mask is used for original image, 

II. Head image reconstruction from noisy image using NFCS-2D  

The results of the reconstructed sparse image practically in NFCS, FRICS and NFCS-2D represented by 

applying the X=0.5 and Y=0.95 the psnr values become as 

Elapsed time is 2.019534 seconds. 

Elapsed time is 2.124597 seconds. 

Elapsed time is 1.061977 seconds. 

PSNR1 = 151.0998, PSNR2 = 218.9815, PSNR3 = 73.0840  

Apply the values of X=0.1 and Y=0.50 then the results are 

Elapsed time is 1.938029 seconds. 

Elapsed time is 1.786954 seconds. 

Elapsed time is 0.982569 seconds. 

PSNR1 = 76.2816, PSNR2 = 129.7083, PSNR3 = 53.4428. in the three nonlinear filtering algorithms the NFCS-

2D is more efficient.  

VI. CONCLUSION 
                      We have proposed an efficient iterative algorithm for the solution of the compressed sensing 

reconstruction problem, based upon a penalized splitting approach and an adaptive nonlinear filtering strategy 

and its convergence property has been established. We remark that, even if we have analyzed the sparse gradient 
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case with under sampled frequency acquisitions, our approach is completely general, and works for different 

kinds of measurements and different choices of the function. The capabilities, in terms of accuracy, stability, 

and speed of NFCS-2D, are illustrated by the results of several numerical experiments and comparisons with a 

state of the art algorithm.  In fact, since this function plays the role of the penalty function in the variation 

approach of the image de-noising problem, It is possible to exploit the different proposals of the de-noising 

literature in order to select new filtering strategies, perhaps more suited to the different practical recovery 

problems.  

                Examples of the use of other filtering strategies, even if considered in a different context. A lot of 

work remains to be done. In particular, a much more detailed theoretical study is necessary to find an objective 

automated way of selecting good values for the free parameters of the algorithm. At present, as far as we know, 

no similar analysis has been performed, even for the best state of the art algorithms. 
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